Natural Language Models for Predicting Programming Comments
نویسندگان
چکیده
Statistical language models have successfully been used to describe and analyze natural language documents. Recent work applying language models to programming languages is focused on the task of predicting code, while mainly ignoring the prediction of programmer comments. In this work, we predict comments from JAVA source files of open source projects, using topic models and n-grams, and we analyze the performance of the models given varying amounts of background data on the project being predicted. We evaluate models on their comment-completion capability in a setting similar to codecompletion tools built into standard code editors, and show that using a comment completion tool can save up to 47% of the comment typing.
منابع مشابه
Balotage in Argentina 2015, a sentiment analysis of tweets
Twitter social network contains a large amount of information generated by its users. That information is composed of opinions and comments that may reflect trends in social behavior. There is talk of trend when it is possible to identify opinions and comments geared towards the same shared by a lot of people direction. To determine if two or more written opinions share the same address, techni...
متن کاملApplication of Gene Expression Programming and Support Vector Regression models to Modeling and Prediction Monthly precipitation
Estimating and predicting precipitation and achieving its runoff play an important role to correct management and exploitation of basins, management of dams and reservoirs, minimizing the flood damages and droughts, and water resource management, so they are considered by hydrologists. The appropriate performance of intelligent models leads researchers to use them for predicting hydrological ph...
متن کاملReinforcement Learning with External Knowledge and Two-Stage Q-functions for Predicting Popular Reddit Threads
This paper addresses the problem of predicting popularity of comments in an online discussion forum using reinforcement learning, particularly addressing two challenges that arise from having natural language state and action spaces. First, the state representation, which characterizes the history of comments tracked in a discussion at a particular point, is augmented to incorporate the global ...
متن کاملNEW OPTIMIZED EQUATIONS WITH INTELLIGENT MODELS FOR PREDICTING HYDRAULIC JUMP CHARACTERISTICS OVER ARTIFICIAL AND NATURAL ROUGH BEDS
The available studies for estimating the characteristics of hydraulic jump are only for artificial or natural beds, and very limited researches have simultaneously considered artificial and natural beds. The aim of this study is to present comprehensive equations and models for predicting the characteristics of hydraulic jump in artificial and natural rough beds with various dimensions, arrange...
متن کاملA New Correlation Based on Multi-Gene Genetic Programming for Predicting the Sweet Natural Gas Compressibility Factor
Gas compressibility factor (z-factor) is an important parameter widely applied in petroleum and chemical engineering. Experimental measurements, equations of state (EOSs) and empirical correlations are the most common sources in z-factor calculations. However, these methods have serious limitations such as being time-consuming as well as those from a computational point of view, like instabilit...
متن کامل